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An Efficient Method for Evaluating the J(8,e,a,b) Integral

Richard N. Hwang

Applied Physics Division
Argonne National Laboratory

Argonne, Illinois 60439

ABSTRACT

This report describes a new technique for evaluating the

generalized form of the resonance integral which allows the

multilevel formalism. By taking advantage of the asymptotic

behavior of the Doppler-broadened line shape functions, the

technique of rational transformation is introduced. The

Gauss-Jacobi quadrature is used to evaluate the integral with

the transformed integrand. The detailed description of this

technique and its mathematical justifications are given.
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INTRODUCTION

The integral J(B
kk

,a
k
,b

k
) represents a generalized form of the

usual J-integral which arises: (1) when the effect of the interference

scattering cross section in the single-level formulation is included; or

(2) when the multilevel formalism is used.

q	

j(Bk'13k'ak'bk)
is defined as

where the parameters are defined according to how the cross sections are

formulated. 1 ' 2 Physically, it is equivalent to the resonance integral

of an "isolated" resonance excluding the effect of mutual self-shielding

due to the neighboring resonances when the NR-approximation is assumed.

In other words, it has precisely the same physical meaning of the usual

J- integral.

In the single-level formulation, bk is set to be zero. Parameters

ek and ak can be defined slightly differently in the resolved and the

unresolved resonance regions to be consistent with the data in the

ENDF/B file. For the resolved resonance region, ak and sk are defined

as

rnk	 °pa 

rk

$k • gJ •	 •
a

=k	 ci /0p0k

ak

where

(2)
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a
pa Potential scattering cross section of the absorber under=

consideration (barns)

a = E
t
/N or Eeq/N (barns/atom).

For the unresolved energy region, parameters 8 1( and aR can be defined

as

aR = 1/2 tan 26 k (3)

and

8k = (or the equivalent a)a	
/(aok 

cos 26
2,p 

(4)

where

jk(R/A)
6

It
= arctan (5)

n (R/A)

6 0 = (6)

6 / = R/A - arctan (R/A) (7)

6 2 = R/A - arctan
3R/A

(8)

and j k and nk are the spherical Bessel and Neumann functions, respectively.

The resonance integral for the "isolated" resonance k is related to

J(BR OR ,aR ,O) by

(RI) R =2.. rx • c • Ji8R OR ,aR ,O) ,	 (9)
E
Ok

1-3

3 - (R/A)2
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where

c = 1	 for resolved resonances

= 1/cos 2 9 	unresolved resonances

In the multilevel formalism of the Adler-Adler form, (3 ' 4) parameters

are defined as follows:

ek 	 rk(sY°	 (10)

vk	 rk(s)/2	
(11)

ak = (1/2)(Htk/Gtk )	 (12)

13 k = 0p • rk s V(471-X2gJGtk • I-E0k)	
(13)

bk = Hxk/Gxk	
(14)

where the multilevel parameters are defined in Ref. 3 and obtained from

ENDF/B by ETOE-2.

The corresponding resonance integral for an "isolated" resonance

excluding the mutual self-shielding effect is therefore

r
(s)o G

(RI)	 =	 k
'kk'

6
k'ak'

b
k) '

E
Ok	 tk

With parameters for various cases defined, the numerical technique

for evaluating Jpk , ek ,ak ,bk) will be discussed. A direct numerical in-

tegration of Eq. (1) using any algorithm is highly undesirable due to the

asymmetric behavior of the x-function. The integration must be performed

on the positive as well as the negative planes of x k where the integrand

-4

(15)





J(ak,ek) + j dxk	(2akI2n 	
2n+1

	

n	
(a

	

=	
k

1	

tPX

2n

0	

j	 ,p) JIB e ,a ,b )k' k- k- k

00
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exhibits different behavior. However, this difficulty can be avoided and,

in fact, one may take full advantage of the symmetric and the asymmetric

properties of the 40- and x-functions by redefining J(Bk ,Ok ,ak ,bk) in the

following way:

-3A

CO

- bk j d
xk	

(2ak ) n X

2n

n=1	 (a +
2n

The two series in Eq. (16) must be uniformly convergent on physical

grounds. Since p k + 2ak x +	 has the physirAl meaning of the total

cross section which must be positive everywhere to be meaningful, it fol-

lows that sk +	 2a0 everywhere. It is interesting to note that the

two geometric series can be written in closed form, and J(fik,Ok,ak,bk)

becomes

jPkek'akbk)	
J(a k ek) 

+ I(8k
,0

k ,ak) - bk • Mf6 k ,Ok ,ak ) (17)
' 

where the I- and M-integrals are defined as

I(8k ,6k ,ak) = (2ak ) 2 j

	

	 	  dxk	
(18)

X 2

0 (ak + n,1 2 - (2ak x) 2	 ax +

(16)

0

CO

and





M(Bk,Ok,ak) = (2a4 2 I 	 X 2
dXk •

(sk + v1 2 - ( 2akx)2
(19)
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The advantage of Eq. (17) over Eq. (1) is quite obvious. Instead

of integrating over both the positive and the negative planes of x k , the

integration now is over the positive xk only. On the other hand, there

are two extra integrals to be evaluated. It should be noted that the

magnitudes of I(5 k 0k ,ak ) and MI8k
,0

k ,ak ) are generally much smaller

than that of the corresponding J-integral. For instance, in the case of

the single-level formulation, a cursory Check indicates that the magni-

tude of the I-integral is generally less than 15% of that of the corres-

ponding J-integral for most cases of practical interest. A similar situa-

tion is also expected for the case of the multilevel formulation based on

the limited data available on 235U, 239Pu, and 241 PU. Hence, less strict

error criteria are required for the I- and M-integrals.

An accurate and efficient algorithm using the Gauss-Jacobi quadra-

ture (5) is proposed to evaluate these integrals simultaneously. In this

algorithm, the J-integral is evaluated accurately to the relative error

of less than 0.1% everywhere in the region of practical interest

(10-5 < f3; any 8. The same number of mesh-points are used for I- and

M-integrals so that the total number of calculations for the I,- and x-

integrals are minimized. The M- and I-integrals obtained this way are

less accurate with the relative error of less than 1% which is believed

to be sufficient for the problems of practical interest. The detailed

description of this algorithm and its mathematical justification will be

described in the following sections.
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TECHNIQUE OF RATIONAL TRANSFORMATION

The proposed Algorithm is directly based on the utilization of the

general Characteristics of the Gauss quadrature and the analytical be-

havior of the 0- and x-functions. In general, the efficiency of the

Gauss quadrature depends strongly on how the integrand behaves. It is

generally true that the integration is exact for a given number of mesh-

points N if the integrand is of the form 2 Aok where k < 2N -

Clearly, the most favorable integrand for the Gauss-quadrature formulas
(5)

r	 kis the one which can be approximated by the polynomial Akx with k as

small as possible. As discussed previously, (1) the integrand of the form

0(x,$) 

s + 0(x,0)

does not meet this requirement since the 0-function quickly approaches

its asymptotic series when x becomes large. As one shall see later, the

integrand of the form

x(& ,x)

6 + (e,x)

is even worse since x( ,x) approaches its asymptotic series faster than

the corresponding 0(0,x). One way of resolving this problem is to divide

the integrand into two parts whereby the integrand of the second integral

in the asymptotic region also exhibits the form of 
Ayk 

with the varia-

ble of integration y = l/x as described by Ref. 6: In this report, a new

method of treating integrands of the forms

-5A





(N-1)/2 f(ui)
• f(0) +	 /

i=2	 1-

Tr/N

9

f3+tl)j

I2n
X

and

is proposed. For simplicity, let f(x) be the integrand under considera-

tion. Instead of integration over x, a transformation is made so that

f(x) dx =	
du 	 f(u) 

K
0 

/1 - U2 (1 - U2)
0 

where N, the total number of points over both the positive and the negative

domains of u, is taken to be an odd integer and the new variable u is

related to x by

K2x2
U2 = 	

1 4- K2X2

and the choice of the parameter K will be discussed later.

1-8

(20)

(21)





and

= constant (25)

Equation (2) represents the Gauss-Jacobi quAdrature with odd number

of mesh points where the related orthogonal polynomial is the Chebyshev

polynomial of first kind and

= cos (2i - 	
(22)

2N

-6A
10

	  (2N)
RN = 

(2N)! 2
2N-1 f 0 <	 < 1 .	 (23)

The inclusion of the u i = 0 point is a significant saving in computing

time since X(06k) = 0 and q0,8 k ) are related to the complementary error

function which can be evaluated readily using the exceedingly efficient

rational approximation suggested by Hastings. (7)
 Thus, the total number

of entries to the 4,- and x-functions is (N - 1)12. The quantity (N - 1)/2

will be referred to as the total number of points required for the inte-

gration of all three integrals.

The purposes of making the rational transformation are many-fold. The

most obvious purpose is to take advantage of the asymptotic properties of

the 4,- and x-functions whereby

1	
constant	 (24)

-
	

+1,1J1





Hence, the asymptotic behavior of 1 a/xk in the x domain can be elimi-

nated. Of even greater importance from a mathematical point of view

is that the transformation amounts to the analytic continuation of the
CO

11

series 1 akx
k
 in the x domain which does

k=0
large x. The corresponding series 1 ykuk

not converge in the limit of

is believed to converge much

more rapidly in the u domain (0 < u < 1). By choosing the parameter K

appropriately according to the analytical behavior of y- and x-function,

it was found that one may obtain an accuracy of 0.1% for the J(6k,Ok,0,0)

integral and 1% or better for the I- and M-integrals using the same num-

ber of mesh points in the region of practical interest. The minimum num-

ber of mesh points required for the prescribed accuracy is obviously

dependent on the magnitudes of 6, 6, and a. For large 6, for instance,

all integrals of the form defined in Eq. (17) are practically exact for

a minimum of one point as y and x become the natural line-shape functions.

At the other extreme, a comparatively large number of mesh points is

required when 6 and e are both small. It was found that a total of six

points is sufficient in all regions of practical interest.

The mathematiral justification and the choice of the parameter will

be given in the next section.

MATIRMICAL JUSTIFICATION AND CHOICE OF K

In spite of the favorable numerical results in the preliminary inves-

tigations, mathematical justifications of the proposed method are needed.

In order to illustrate the merits of the rational transformation, let

+ A

11 6 	 C , (26)
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where A and C are two arbitrary

assume the following forms

A

11.0

constants.	 If the ty- and x-functions

(27a)

(27b)

=	
1	 (28)

constant • u
2N 

. (29)

1 4. c2x2

and

AX
X	 1

1 +

the integrands

and

003 I' 0

C2x2

become

+

1 - u2

2N

1 - U2 cs	 11,1

For the case of large 0, it is quite obvious that 1p- and x-functions will

approach the natural line shapes and the proposed method becomes the most

efficient. For the case of small 0, the tp- and x-functions will approach

the natural line-shape functions only if x is large. The rapidity with

which the 11,- and x- functions approach their asymptotic forms depends

strongly on the magnitude of 8. Hence, the problem becomes the appro-

priate choice of K as a function of e and 0 so that

f =
	 2i	

(30)
irl
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converges rapidly in the non-asymptotic region where the *- and x-functions

are significantly different from their corresponding natural line shapes.

To further illustrate the problems involved, it is useful to examine

some mathematical properties of *- and x-integrals first.

A. Some Analytical Behavior of *- and x-Functions 

As mentioned previously, the merit of the proposed technique is rather

obvious for the cases where 6 is large. Hence, the cases with small 8 will

be emphasized. For small 0, it can be shown quite readily(t8) that

(0,x)	
e82)

' cos xE dE

,	 6 e_y2	 9 2 dF(y)	 .

2	 2 dy

x(8,x) = I e-10-W/02) .sin xE dE

/W
OF(y) - — 6 2y e

,2
-' + • • •

2

where

Y =	 x
	

(33)
2

and F(y) is the Dawson integral defined as

F(y) = e	 e	 dt .
_y 2	 t2	

(34)

The Dawson integral determines how rapidly *- and x-integrals approach

their asymptotic forms of 1/x 2 and l/x respectively. dF(y)/dy is related

to F(y) in a simple way:

L- 9A

(31)

(32)
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dF(y) 
= 1 - 2yF(y) .

dy

For small y, F(y) can be expressed as

(-1)
k
2
k
y

21<-1-1

F(y) =	 I

	k=01	 3 . . . (2k + 1)

and rapidly approaches its asymptotic series(9)

r
F(y)	 +

1 • 3 . . . (2k - 1) = —
1 

2
2k
y
2k+1

2y k=1

for y > 1. On the other hand, dF(y)/dy approaches its asymptotic series

dF(y)	 1	 1 • 3 . . . (2k -1) 

dy	 2y2	 k=1	 2
2k
y
2k+2 

GO

(2k + 1) ,	 (38)

for y » 1. It is obvious that Eq. (37) converges much more rapidly than

Eq. (38) for any given y.

For the tp-integral, the Gaussian term is predominant when y is small,

and the dF/dy term becomes more important when y > • n, 3.5 or larger depend-

ing on the magnitude of 6. For small y, the Gaussian term can be expressed

as a power series

_y2 =	 (_1)ky2k
	

(39)
	k=1	 k!

For the x-integral, the first term 6 • F(y) is always the predominant term

as long as 6 < 1. By comparing the ratios of (k + 1)-th and k-th terms in

Eqs. (36), (37), (38), and (39), it is seen that the x-function can be

represented by a power series of y which converges approximately at the

1-10A

(35)

(36)

(37)
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same rate as the corresponding series of *-functions for small y and

approaches the more rapidly converging asymptotic series when y becomes

large. Hence, the region of convergence in the u-domain after the trans-

formation is expected to be approximately the same for both *- and x-

functions. It is, therefore, reasonable to expect that

X2 / y.u21
($ + *)	 1=0 1

will converge reasonably rapidly as long as the corresponding

CO

	  _	 vL a.u2i
B + *	 i=0 1

converges rapidly. This provides the basis for evaluating J-, M-, and

I-integrals simultaneously using the same number of mesh points. One way

of optimizing the quadrature formula defined in Eq. (20) is to Choose an

appropriate K so that the J-integral can be evaluated accurately; where-

as the M- and I-integrals obtained using the identical mesh points will

be less accurate depending on the magnitude of ak as implied by Eq. (16).

There is yet another useful analytical behavior of *- and x-functions.

The optimization of Eq. (16) can also be pictured as a way to minimize

the deviation of *- and x-functions from the Lorentzian forms defined by

Eqs. (27a) and (27b). In reality, with the exception of two extremes at

small or large values of y, the deviation is generally large at inter-

mediate values of y especially when 8 becomes small. One way of mini-

mizing the deviation of the *-function from Eq. 27a is to impose the

condition

lA





0 [1 + c2x2
(40)

A 	
ti)J2 dx = 0

and

dx
fw

A 	12
-	 dx	 (44)

	

0 1 1	 C2x2

	d x= 0	 (45)

f.	
AX 	)2

) 0 ( 1 4' C2X2)

16
L-12A

or

-	 -
A2	 2/T 0 

e
(02/4)(1+1/c)2 

Erfc e [1 + 1 A + 4,(0 0/T 6) = 0	 (41)
C	 C	 2	 c

on the parameters A and C. Under this condition, Eq. (27a) is a good

approximation in the least-square sense. It is interesting to note that

the same relation is also true for the x-function. It has been shown
(8)

that

r * 2 dx =

0	 '0
r"

	
(42)

By using Parseval's theorem for the Fourier transforms , (10) it can be

shown quite readily that

(-
f-

Ax	 A 
x dx =

J O 1	 C2X2	 0 1 C2X2

dx
	

(43)

Hence, the condition

Ax 

s: {1 + c2x2
X 12
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will also yield the same relation given by Eq. (41). Hence, the devia-

tions of ty- and x-functions from the corresponding Lorentzian shapes are

identical in the least-square sense.

B. Choice of Parameter K 

The parameter K will be chosen to satisfy the eilur criteria of

Icl < 0.1 for J and lel < 1% for M- and I-integrals. Since the behavior

of the integrand f and its derivatives f (2n) depend on the magnitudes of

6 and 0, it is, therefore, useful to divide the region of practical

interest into three regions:

I. Fast Reactor Region [64(0,6) > 0.2; 0 < 1]

II. Lorentzian Region (6 > 0.5 excluding Region I)

III. Intermediate Region (region excluding Regions I and II).

Figure 1 illustrates graphically the boundaries of these regions as

a function of j and 0 where 6 = 2j . 10- 5 . The choice of K in these three

regions will be discussed as follows.

I. Fast Reactor Region [6/(0,0) > 0.2, 8 < 1]

This region is extremely important for fast reactor calculations

since approximately 80% or more of the resonances under consideration

belong to this region. Two special Characteristics of the integrands in

this region are: (1) the shapes of the integrands are generally not too

different from the corresponding ty or x2 in the numerators; and (2) the

integrands can always be expressed in terms of the rapidly convergent

series in u. By utilizing these Characteristics one may choose K using

either one of the following arguments:





/it
	 r:
Erfc1 rl+

12

1 
•

— (0/2)(1 + 1/c)
(46)
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(1) On the Basis of Ii.ast-Squared Fitting - K can be chosen to sat-

isfy Eq. (41). It is most convenient to set A = g0,e) and to solve for

C from Eq. (41). By comparing the variations of the function of the Gauss

form to that of the Lorentzian form, it is obvious that C must be less

than 0/2 in order to satisfy Eq. (41). For C < 0/2, the second term in

the transcendental equation becomes

?-2

Hence, the solution is approximately

— g0,0](0,e)	 4(0 5 /T 8)/4]

)
41 — g0,011)(00) — [00 5 /T 0/4]} 2 — 4 2 (00)(0 0/T 014]	 tp2(00/

(47)

where (o,e) and 11,0 0/T 0 can be evaluated most efficiently by using

Hasting's rational approximation.(7)

(2) On the Basis of Analytic Continuation - The use of the analytic

continuation argument yields a much simpler expression for K and is recom-

mended over Eq. (47). Since the integrand of the form 0(8 + tp) can always

be expanded into a uniformly convergent series
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=	 *(x 0)	 (x,e)[*(0,0) - (x,e)] 
+ *	 a + *( 0,0)	 [B + *OM]

gx,0)4(00) - (x, 0)]2 	
(48)

[13 + * COMP

In the nonasymptotic region where 11,(x,0) can be approximated by the Gauss-

form, Eq. (48) becomes

-*(x,e)	 *(0,e)	 (_1)n Anyzn

+ (x,0)	 a + 4,(0,0) n=0

tp(0,e) = 	  1+
2n

B + *(0,0)	 n=1

where,

Ao = 1 ;

1
= 1

+ *(0,0)

r- 	 3	 1 	
; etc.

2
A2 =	 1 -	 2[_	 *(00)

a + ) ( 0,x)	 B + (0,x)

62
(-1)

A
C
v-1

 A	 —
A-IAn 	 4K2

(149)

and

B
v =

,v-1 = 	 (v - 1)! 
'A-1

(v - AMA - 1)!
(the binomial coefficient).

(50)
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It was found that the convergence of Eq. (49) is relatively insen-

sitive to the value of K as long as 8/6 < K < 0/2. From numerical

experimentation, it was found that

K = 0/5	 (51)

will yield the most accurate results in J-integral. A similar argument

is also applicable to the M- and I-integrals. Equation (51) is much

simpler than Eq. (47) and is therefore recommended.

It is interesting to note that K is independent of 6 in this region.

It follows that the 0- and x-functions used in the integrals of a given 6

can be stored and used again for integrals with different 6 as long as 0

is the same. This is particularly suitable for calculations of critical

assemblies where the plates of the heavy isotopes may have different

thickness and surroundings but the temperature stays the same.

It was found that five points or less are necessary to give the pres-

cribed accuracy in this region.

II. Lorentzian Region (0 > 0.5 Excluding Region I)

In this region, the 0- and x- function will approach their asymptotic

form rapidly, and the quantity 0/(6 + 0) approaches 1/(3 + 1 + 6x2)

rapidly. Hence, K can be taken to be close to /6/(6 + 1). In this

region, the accuracy of the integration is generally not sensitive to the

values of K as long as 0.3/61(6 + 1) < K < 4/(6 + 1). It was found

/2717717717	 (52)

will generally give good results for J-, M-, and I-integrals.

2-3
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As in the case of Region I, the proposed method is also exceedingly

efficient in this region. Less than five points are required to give

the prescribed accuracy.

III. Intermediate Region (Region Excluding Regions I and II)

Among the three regions, the proposed method is relatively least

efficient in this one. It is the region where both 13 and e are small.

It is also the region of least importance in fast reactor applications.

For J-integral, the integrand *1(8 + 11)) exhibits a step function

behavior with a sharp drop near

x =	 itra + (47f 0)1e]

where 0/(o 0) is approximately equal to half of the value at x = 0.

This is quite obvious if is replaced by the Gauss form: The point of

inflection for ip/03 + 0 is also close to this half-way point. Since the

point of inflection is still small compared to x = 7/0 where *(x,e)

approaches 1/x 2 ,
(11) it is rather difficult to chose a K that will repro-

duce the same step function-like behavior for quantity (1 - u2).

One way of Choosing K in this region is to use a reference point xl,

which represents the breaking point of the power series andthe asymptotic

	

series representations of *1(8 +	 The exact value of x l is extremely

difficult to obtain. From Ref. 1 it is clear that x l must be approxi-

mately equal to the breaking point suggested by Nicholson and Grassesthi.(6)

Hence, xx will be taken to be





1.8971 + 1111{1 + 0.85 1

26

2
XI = -

0

1/2

(53)

1
- — 1.8971 +

2°2 L znhl + 0.85 -2-11 +

26	 6
-J

x 1 = 31/2
	

(54)
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for values of x 1 >	 13 + 1)/8 and

for x l in Eq.	 (53) < /(6 + 1)/6	 .

Define

K2x1
-u2

3
(55)

1 + KM

so that

U2
K2	 =	

1 1
(56)

1 - U2 ,2
1	 1

By numerical experimentation, it was found that, by setting u 1 '1, 0.77

or 1/K = 0.8292 x l , good results in J-, M-, and I-integrals can be

obtained for the case where Eq. (53) is valid. Better results can be

obtained by letting

1/K

where

p	 =

=

1

0.8292 x /	•	 p	 ,

+ 0.018(6 - 0.00128) 0.088

(57)

(58)
8 + 0.00128 4)(0,6)
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For the case where Eq. (54) is applicable, good results can be obtained by

letting u2 = 0.5 or

3-2-6

1/K =	 1.	 (59)

When a becomes extremely small, the integrands are not sensitive to the

Gaussian-like behavior of y-function and Eq. (59) will approach the same

limit defined previously for the Lorentzian region.

To give the prescribed accuracy of lel < 0.1% for the J-integral and

lel < 1% for M- and I-integral, a total of six points is required in this

region. It should be noted that Region III is generally very small for

problems of practical interest. The cases with extremely small 8 are

those for low-energy resonances with large neutron width. The combination

of low resonance energy and large neutron width implies that 8 must be rea-

sonably large. It is extremely rare that a resonance will fall into the

region a < l0- 3 and 6 < 0.1.

C. Further Economization 

Under the condition that 6k is large compared to 10,8k),

J(ek ,6k ,ak ,bk ) can be evaluated analytically without going through the

integration routine. In fast reactor applications there are signi-

ficantly large numbers of resonances that satisfy this condition. It is

undoubtedly a significant saving on the computing time to include the

analytical expressions in the proposed algorithm.

The integral J(e k ,6 k ,ak ,bk) can be expressed in terms of a uniformly

convergent series





dx
k
 kxk'ek)

j(Bk'ek'ak'bk) =

qxk,ek)

+
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+ bkx(xk,Ok)
dx

k
q0,ek)

	

bk ;Ix], , ek fl rkplo 8	 -5 ,
-

2

4,(0 ek	 (	 k)

xk'ek) — 
2akx(xk,6ki]

n/2 

(CIk	 ' k (

EP ( 13 ' e k) -
+	

;-
1 

*(0,5 8 k )] - akbk ly(00/T ek)

[3 k 4' 440 e I]
' k)

(60)

where identities given by Eq. (43) were used. It was found that, for

4)(°'ek)  > 
15

qo,ek) 
_

an accuracy of lel < 0.1% can be obtained by keeping only the first two

significant terms in Eq. (60). Thus,





j(8k'ek'0'°)	
n/2

+ 44,8
k	 (	 k

25

1 + 00,0
k ) —

8 k	 q°'8k)

akb0/00/T
mfekkak)	 k1j 

(	 '	 '	

e

	F 3k	 4)(°'8k)r

IK,Ok ,ak )	 0 .	 (63)

CONCLUSION

The new Algorithm using the technique of the rational transformation

and the Gauss-Jacobi quadrature is believed to provide an accurate, eco-

nomical, and flexible tool for evaluting the J(B k ,8k ,ak ,bk ) integral.

This algorithm is particularly efficient in Region I where most of the

practical problems in fast reactor applications belong and Region II

where 0 is relatively large. It was found that an accuracy of 1E1 < 0.1%

for the J-integral and lel < 1.0% for the M- and I-integrals can be

obtained by using five mesh points or less (total entries of QUICKW

routine).
(12) For Region III, which is less important in fast reactor

applications, six mesh points are required to give the prescribed accu-

racies. If one relaxes the accuracy of J-integral to 10 < 0.5% for this

region, five mesh points are sufficient. For MC 2-2, six points for all

regions are recommended to avoid any inconvenience in the programming.

FORTRAN listings are included in Appendix A.

2-8

(61)

(62)
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Since the integrand of the overlap integral in the resolved region

exhibits a behavior similar to those for the J-, M-, and I-integrals,

studies are under way to examine whether the same technique can be

extended to the overlap integral.
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APPENDIX A •

FORTRAN Listing

	  SU8KUUTINE FJ
iMP6IC1T REAL*LI (A n hoW.4)
CUOMITN /WFJ1/LETA,T5T2,13ETA
CV MMLJ N/T R II/TR(02,62),11(b462),A1MW.4X,REW,W11Y4R1 _
CUMMON/R/ EERFCAAWG
CunM1JN/F/AK1,OLNARAT,C,AAA,TEST1
N•'ENSIUN.LLP(d)

RAT(10),AKI(10),OEN(10)
rIATA LLP/	 .2393156642ie4647231720,1,6(531226582A.n296j86501

X.93b0Ih2426,.9927Vdd740/ 	
K1=1
WrlY=.5uLETA
AR5=A+1Y
CALL	 INL
PSIZ=.86622(.9*ZETA*EERFC
H.PIETA+PS12
TEST1=H/PSIZ
IF(TEST1.6E.15000 TO 100
A1NTZ=.5/TES11
11-(ZETA00T,1.)GU TO 10
1F(BETAO,E..015)GU 1112
IF(ZETA,0E,.5)G.6_1(4_Ik
RuVPS1=BETA/PSIZ
IF(110VPSI.GE..2)GO TO 2
B6=4.*(10971+0LoG(1,+.153Z9Z9*ZUARIETA))/ZEIA!x*2_
TEST2=664,BETA
IF(TEST2,GT..03)GU TO 4

10 C=.70114WSORTf(10.RETA)/RE1A/
GU TO 3

2 C=5./ZETA
GU TO 3

4 IF(TE5T2.LT.1.0)GU Tn 11
FAC=1.+.018*(BETA-.00126)/(6ETA+.0012b)+.$0a#B6VPSI
C=.6292*u5QRT( 811)*FAC
GU TU 3

11 C=.70714(0S0KT(Bb+(1,+bETA)/BETA)
3 TUT2=0.

OU 1 1=1,6
AX=',NHY*ZLP(I)*C/OSORT(1eqLP(I)**2)
CALL QUILKW
1351=.d9b2269*ZETA*REW
AK1(1)=,d5622b9ZETA*AIMw
nEN(I)=GETA+RS1

RAT(I)=PSI/DEN(I)/(1.-20(I)**2)
1 TOT2=TOTz+RAT(1)

TOT2=10T2+A1NT2.
TUT2=TUT2*C.2416609733
RETURN

. .10 0 ARG=.7071067_81*-LETA
CALL RATNL
P5I22=,6266570od5*ZETA*EERFC
	 TUT2=1196_324E1_1*C1.+(RSID-P5I221/H)/H 

RETURN
END

-IL
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SUBRUUTINE RATNL
IMPLICIT RFAL*3(A—H,D^Z)
CUNMON/R/ LERFC,ARG
T=1./(1,+.47047*ARG)
EERFC=.3460i242*1".095679S*T**2+.7476556*T**3
RETURN
END

	 	 SUBRUUTINE Fl
IMPLICIT REAL*8 (A—HAU—Z)
CUMMUN /OFJ1/ZETAATUT2,LIETA
COMMON/ TRTI /TR( (32,62)/T ( to2p(.1Z)4AP I WA AX/REW/WHYLKI_ _
CUMMUN/F/AKIADENARAT,C,AAAATEST1
nimENsluN RAT(Iu),AKI(10),DEN(10)
IF(TEST1.GE,1b.IGU TO 100
ASQ.AAA**2
TUT2=0,0
DU 1 1=1.,()
4KISQ.AKI(1)v*2*ASO

1 . TUT2 = TOT2+(AKISL1/(DEN(I)**24.AKISQ) )*RAT(I)
TUT2=TOT2*C* n 2416609733 	
RETURN

100 TUT2*0.
RETURN
END
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